direct product, p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C2×Q82, C22.66C25, C23.278C24, C42.563C23, C22.1152+ 1+4, (C2×C4).64C24, C4.51(C22×Q8), C2.13(Q8×C23), C4⋊C4.475C23, C4⋊Q8.334C22, (C2×Q8).486C23, (C4×Q8).321C22, C22.53(C22×Q8), (C2×C42).934C22, C2.22(C2×2+ 1+4), (C22×C4).1587C23, (C22×Q8).356C22, (C2×C4×Q8).56C2, (C2×C4⋊Q8).57C2, (C2×C4).325(C2×Q8), (C2×C4⋊C4).958C22, SmallGroup(128,2209)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×Q82
G = < a,b,c,d,e | a2=b4=d4=1, c2=b2, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 700 in 556 conjugacy classes, 484 normal (5 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, Q8, Q8, C23, C42, C4⋊C4, C22×C4, C2×Q8, C2×Q8, C2×C42, C2×C4⋊C4, C4×Q8, C4⋊Q8, C22×Q8, C2×C4×Q8, C2×C4⋊Q8, Q82, C2×Q82
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C24, C22×Q8, 2+ 1+4, C25, Q82, Q8×C23, C2×2+ 1+4, C2×Q82
(1 17)(2 18)(3 19)(4 20)(5 26)(6 27)(7 28)(8 25)(9 37)(10 38)(11 39)(12 40)(13 32)(14 29)(15 30)(16 31)(21 109)(22 110)(23 111)(24 112)(33 42)(34 43)(35 44)(36 41)(45 71)(46 72)(47 69)(48 70)(49 58)(50 59)(51 60)(52 57)(53 62)(54 63)(55 64)(56 61)(65 76)(66 73)(67 74)(68 75)(77 104)(78 101)(79 102)(80 103)(81 92)(82 89)(83 90)(84 91)(85 96)(86 93)(87 94)(88 95)(97 108)(98 105)(99 106)(100 107)(113 124)(114 121)(115 122)(116 123)(117 128)(118 125)(119 126)(120 127)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 86 3 88)(2 85 4 87)(5 102 7 104)(6 101 8 103)(9 67 11 65)(10 66 12 68)(13 81 15 83)(14 84 16 82)(17 93 19 95)(18 96 20 94)(21 41 23 43)(22 44 24 42)(25 80 27 78)(26 79 28 77)(29 91 31 89)(30 90 32 92)(33 110 35 112)(34 109 36 111)(37 74 39 76)(38 73 40 75)(45 121 47 123)(46 124 48 122)(49 119 51 117)(50 118 52 120)(53 106 55 108)(54 105 56 107)(57 127 59 125)(58 126 60 128)(61 100 63 98)(62 99 64 97)(69 116 71 114)(70 115 72 113)
(1 12 6 29)(2 9 7 30)(3 10 8 31)(4 11 5 32)(13 20 39 26)(14 17 40 27)(15 18 37 28)(16 19 38 25)(21 99 117 122)(22 100 118 123)(23 97 119 124)(24 98 120 121)(33 56 59 69)(34 53 60 70)(35 54 57 71)(36 55 58 72)(41 64 49 46)(42 61 50 47)(43 62 51 48)(44 63 52 45)(65 102 92 87)(66 103 89 88)(67 104 90 85)(68 101 91 86)(73 80 82 95)(74 77 83 96)(75 78 84 93)(76 79 81 94)(105 127 114 112)(106 128 115 109)(107 125 116 110)(108 126 113 111)
(1 35 6 57)(2 36 7 58)(3 33 8 59)(4 34 5 60)(9 72 30 55)(10 69 31 56)(11 70 32 53)(12 71 29 54)(13 62 39 48)(14 63 40 45)(15 64 37 46)(16 61 38 47)(17 44 27 52)(18 41 28 49)(19 42 25 50)(20 43 26 51)(21 79 117 94)(22 80 118 95)(23 77 119 96)(24 78 120 93)(65 115 92 106)(66 116 89 107)(67 113 90 108)(68 114 91 105)(73 123 82 100)(74 124 83 97)(75 121 84 98)(76 122 81 99)(85 111 104 126)(86 112 101 127)(87 109 102 128)(88 110 103 125)
G:=sub<Sym(128)| (1,17)(2,18)(3,19)(4,20)(5,26)(6,27)(7,28)(8,25)(9,37)(10,38)(11,39)(12,40)(13,32)(14,29)(15,30)(16,31)(21,109)(22,110)(23,111)(24,112)(33,42)(34,43)(35,44)(36,41)(45,71)(46,72)(47,69)(48,70)(49,58)(50,59)(51,60)(52,57)(53,62)(54,63)(55,64)(56,61)(65,76)(66,73)(67,74)(68,75)(77,104)(78,101)(79,102)(80,103)(81,92)(82,89)(83,90)(84,91)(85,96)(86,93)(87,94)(88,95)(97,108)(98,105)(99,106)(100,107)(113,124)(114,121)(115,122)(116,123)(117,128)(118,125)(119,126)(120,127), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,86,3,88)(2,85,4,87)(5,102,7,104)(6,101,8,103)(9,67,11,65)(10,66,12,68)(13,81,15,83)(14,84,16,82)(17,93,19,95)(18,96,20,94)(21,41,23,43)(22,44,24,42)(25,80,27,78)(26,79,28,77)(29,91,31,89)(30,90,32,92)(33,110,35,112)(34,109,36,111)(37,74,39,76)(38,73,40,75)(45,121,47,123)(46,124,48,122)(49,119,51,117)(50,118,52,120)(53,106,55,108)(54,105,56,107)(57,127,59,125)(58,126,60,128)(61,100,63,98)(62,99,64,97)(69,116,71,114)(70,115,72,113), (1,12,6,29)(2,9,7,30)(3,10,8,31)(4,11,5,32)(13,20,39,26)(14,17,40,27)(15,18,37,28)(16,19,38,25)(21,99,117,122)(22,100,118,123)(23,97,119,124)(24,98,120,121)(33,56,59,69)(34,53,60,70)(35,54,57,71)(36,55,58,72)(41,64,49,46)(42,61,50,47)(43,62,51,48)(44,63,52,45)(65,102,92,87)(66,103,89,88)(67,104,90,85)(68,101,91,86)(73,80,82,95)(74,77,83,96)(75,78,84,93)(76,79,81,94)(105,127,114,112)(106,128,115,109)(107,125,116,110)(108,126,113,111), (1,35,6,57)(2,36,7,58)(3,33,8,59)(4,34,5,60)(9,72,30,55)(10,69,31,56)(11,70,32,53)(12,71,29,54)(13,62,39,48)(14,63,40,45)(15,64,37,46)(16,61,38,47)(17,44,27,52)(18,41,28,49)(19,42,25,50)(20,43,26,51)(21,79,117,94)(22,80,118,95)(23,77,119,96)(24,78,120,93)(65,115,92,106)(66,116,89,107)(67,113,90,108)(68,114,91,105)(73,123,82,100)(74,124,83,97)(75,121,84,98)(76,122,81,99)(85,111,104,126)(86,112,101,127)(87,109,102,128)(88,110,103,125)>;
G:=Group( (1,17)(2,18)(3,19)(4,20)(5,26)(6,27)(7,28)(8,25)(9,37)(10,38)(11,39)(12,40)(13,32)(14,29)(15,30)(16,31)(21,109)(22,110)(23,111)(24,112)(33,42)(34,43)(35,44)(36,41)(45,71)(46,72)(47,69)(48,70)(49,58)(50,59)(51,60)(52,57)(53,62)(54,63)(55,64)(56,61)(65,76)(66,73)(67,74)(68,75)(77,104)(78,101)(79,102)(80,103)(81,92)(82,89)(83,90)(84,91)(85,96)(86,93)(87,94)(88,95)(97,108)(98,105)(99,106)(100,107)(113,124)(114,121)(115,122)(116,123)(117,128)(118,125)(119,126)(120,127), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,86,3,88)(2,85,4,87)(5,102,7,104)(6,101,8,103)(9,67,11,65)(10,66,12,68)(13,81,15,83)(14,84,16,82)(17,93,19,95)(18,96,20,94)(21,41,23,43)(22,44,24,42)(25,80,27,78)(26,79,28,77)(29,91,31,89)(30,90,32,92)(33,110,35,112)(34,109,36,111)(37,74,39,76)(38,73,40,75)(45,121,47,123)(46,124,48,122)(49,119,51,117)(50,118,52,120)(53,106,55,108)(54,105,56,107)(57,127,59,125)(58,126,60,128)(61,100,63,98)(62,99,64,97)(69,116,71,114)(70,115,72,113), (1,12,6,29)(2,9,7,30)(3,10,8,31)(4,11,5,32)(13,20,39,26)(14,17,40,27)(15,18,37,28)(16,19,38,25)(21,99,117,122)(22,100,118,123)(23,97,119,124)(24,98,120,121)(33,56,59,69)(34,53,60,70)(35,54,57,71)(36,55,58,72)(41,64,49,46)(42,61,50,47)(43,62,51,48)(44,63,52,45)(65,102,92,87)(66,103,89,88)(67,104,90,85)(68,101,91,86)(73,80,82,95)(74,77,83,96)(75,78,84,93)(76,79,81,94)(105,127,114,112)(106,128,115,109)(107,125,116,110)(108,126,113,111), (1,35,6,57)(2,36,7,58)(3,33,8,59)(4,34,5,60)(9,72,30,55)(10,69,31,56)(11,70,32,53)(12,71,29,54)(13,62,39,48)(14,63,40,45)(15,64,37,46)(16,61,38,47)(17,44,27,52)(18,41,28,49)(19,42,25,50)(20,43,26,51)(21,79,117,94)(22,80,118,95)(23,77,119,96)(24,78,120,93)(65,115,92,106)(66,116,89,107)(67,113,90,108)(68,114,91,105)(73,123,82,100)(74,124,83,97)(75,121,84,98)(76,122,81,99)(85,111,104,126)(86,112,101,127)(87,109,102,128)(88,110,103,125) );
G=PermutationGroup([[(1,17),(2,18),(3,19),(4,20),(5,26),(6,27),(7,28),(8,25),(9,37),(10,38),(11,39),(12,40),(13,32),(14,29),(15,30),(16,31),(21,109),(22,110),(23,111),(24,112),(33,42),(34,43),(35,44),(36,41),(45,71),(46,72),(47,69),(48,70),(49,58),(50,59),(51,60),(52,57),(53,62),(54,63),(55,64),(56,61),(65,76),(66,73),(67,74),(68,75),(77,104),(78,101),(79,102),(80,103),(81,92),(82,89),(83,90),(84,91),(85,96),(86,93),(87,94),(88,95),(97,108),(98,105),(99,106),(100,107),(113,124),(114,121),(115,122),(116,123),(117,128),(118,125),(119,126),(120,127)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,86,3,88),(2,85,4,87),(5,102,7,104),(6,101,8,103),(9,67,11,65),(10,66,12,68),(13,81,15,83),(14,84,16,82),(17,93,19,95),(18,96,20,94),(21,41,23,43),(22,44,24,42),(25,80,27,78),(26,79,28,77),(29,91,31,89),(30,90,32,92),(33,110,35,112),(34,109,36,111),(37,74,39,76),(38,73,40,75),(45,121,47,123),(46,124,48,122),(49,119,51,117),(50,118,52,120),(53,106,55,108),(54,105,56,107),(57,127,59,125),(58,126,60,128),(61,100,63,98),(62,99,64,97),(69,116,71,114),(70,115,72,113)], [(1,12,6,29),(2,9,7,30),(3,10,8,31),(4,11,5,32),(13,20,39,26),(14,17,40,27),(15,18,37,28),(16,19,38,25),(21,99,117,122),(22,100,118,123),(23,97,119,124),(24,98,120,121),(33,56,59,69),(34,53,60,70),(35,54,57,71),(36,55,58,72),(41,64,49,46),(42,61,50,47),(43,62,51,48),(44,63,52,45),(65,102,92,87),(66,103,89,88),(67,104,90,85),(68,101,91,86),(73,80,82,95),(74,77,83,96),(75,78,84,93),(76,79,81,94),(105,127,114,112),(106,128,115,109),(107,125,116,110),(108,126,113,111)], [(1,35,6,57),(2,36,7,58),(3,33,8,59),(4,34,5,60),(9,72,30,55),(10,69,31,56),(11,70,32,53),(12,71,29,54),(13,62,39,48),(14,63,40,45),(15,64,37,46),(16,61,38,47),(17,44,27,52),(18,41,28,49),(19,42,25,50),(20,43,26,51),(21,79,117,94),(22,80,118,95),(23,77,119,96),(24,78,120,93),(65,115,92,106),(66,116,89,107),(67,113,90,108),(68,114,91,105),(73,123,82,100),(74,124,83,97),(75,121,84,98),(76,122,81,99),(85,111,104,126),(86,112,101,127),(87,109,102,128),(88,110,103,125)]])
50 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | ··· | 4X | 4Y | ··· | 4AP |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | - | + |
image | C1 | C2 | C2 | C2 | Q8 | 2+ 1+4 |
kernel | C2×Q82 | C2×C4×Q8 | C2×C4⋊Q8 | Q82 | C2×Q8 | C22 |
# reps | 1 | 6 | 9 | 16 | 16 | 2 |
Matrix representation of C2×Q82 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 1 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
3 | 0 | 0 | 0 | 0 | 0 |
2 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 1 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
2 | 4 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 2 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,4,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,2],[3,2,0,0,0,0,0,2,0,0,0,0,0,0,2,1,0,0,0,0,0,3,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[2,0,0,0,0,0,4,3,0,0,0,0,0,0,2,0,0,0,0,0,2,3,0,0,0,0,0,0,4,0,0,0,0,0,0,4] >;
C2×Q82 in GAP, Magma, Sage, TeX
C_2\times Q_8^2
% in TeX
G:=Group("C2xQ8^2");
// GroupNames label
G:=SmallGroup(128,2209);
// by ID
G=gap.SmallGroup(128,2209);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,672,477,232,1430,352,570,136]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=d^4=1,c^2=b^2,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations